
AU/ACSC/173/2000-04

AIR COMMAND AND STAFF COLLEGE

AIR UNIVERSITY

THE SOFTWARE MAINTENANCE SPECTRUM:

USING MORE THAN JUST NEW TOYS

by

Ricky E. Sward, Maj, USAF

A Research Report Submitted to the Faculty

In Partial Fulfillment of the Graduation Requirements

Advisor: Lt Col Jerry Quenneville

Maxwell Air Force Base, Alabama

April 2000

REPORT DOCUMENTATION PAGE Form Approved OMB No.
0704-0188

Public reporting burder for this collection of information is estibated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing
and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burder to Department of Defense, Washington
Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of
law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)
01-04-2000

2. REPORT TYPE
Thesis

3. DATES COVERED (FROM - TO)
xx-xx-2000 to xx-xx-2000

4. TITLE AND SUBTITLE
The Software Maintenance Spectrum: Using More than Just New Toys
Unclassified

5a. CONTRACT NUMBER
5b. GRANT NUMBER
5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)
Sward, Rickey E. ;

5d. PROJECT NUMBER
5e. TASK NUMBER
5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME AND ADDRESS
Air Command and Staff College
Maxwell AFB, AL36112

8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING/MONITORING AGENCY NAME AND ADDRESS
,

10. SPONSOR/MONITOR'S ACRONYM(S)
11. SPONSOR/MONITOR'S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
APUBLIC RELEASE
,
13. SUPPLEMENTARY NOTES
14. ABSTRACT
As the Air Force enters the 21st century, the software that runs our information systems continues to age and become harder to maintain.
Organizations that maintain this legacy software are faced with the challenge of rising software maintenance costs. This paper presents a
spectrum of software maintenance options that can be used to reduce the cost of maintenance. The software understanding and programmer
unfamiliarity factors from the COCOMO II model are compared to graphically show the effect good software understandability can have on
the cost of maintenance. The structure, application clarity, and self-descriptiveness of a software module affect its understandability. The cost
of software maintenance is quantified by combining factors from the COCOMO II model and the Software Reengineering Assessment
Handbook reengineering decision model that affect understandability. A spectrum of software maintenance options include status quo,
redocument, reverse engineer, translate source code, restructure within a paradigm, restructure into a new paradigm, and new acquisition is
presented. The benefits of each option are presented in terms of their effect on understandability. Organizations faced with rising maintenance
costs should consider the full spectrum of software maintenance options before choosing to replace a software module through new
acquisition. By using automated tools, some of the reengineering options present a cost-effective way to reduce the cost of software
maintenance.
15. SUBJECT TERMS
16. SECURITY CLASSIFICATION OF: 17. LIMITATION

OF ABSTRACT
Public Release

18.
NUMBER
OF PAGES
42

19. NAME OF RESPONSIBLE PERSON
Fenster, Lynn
lfenster@dtic.mil

a. REPORT
Unclassified

b. ABSTRACT
Unclassified

c. THIS PAGE
Unclassified

19b. TELEPHONE NUMBER
International Area Code
Area Code Telephone Number
703767-9007
DSN
427-9007

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39.18

ii

Disclaimer

The views expressed in this academic research paper are those of the author and do not

reflect the official policy or position of the US government or the Department of Defense. In

accordance with Air Force Instruction 51-303, it is not copyrighted, but is the property of the

United States government.

iii

Contents

Page

DISCLAIMER .. ii

LIST OF ILLUSTRATIONS...v

LIST OF TABLES... vi

PREFACE... vii

ABSTRACT... viii

INTRODUCTION ...1
Background and significance of the problem ..2
Cheyenne Mountain Upgrade (CMU) Example..3

THE IMPORTANCE OF UNDERSTANDABILITY...5
Software Understanding ..5
Programmer Unfamiliarity...7
The Importance of Understandability..8

QUANTIFYING THE COST OF SOFTWARE MAINTENANCE...11
The COCOMO II Development Cost Model ..11
The SRAH Reengineering Decision Model ..13
The Cost of Software Maintenance ...15

THE SOFTWARE MAINTENANCE SPECTRUM...19
Status Quo..21
Redocument ...21
Reverse Engineer ...22
Translate Source Code...22
Restructure within a Paradigm ..23
Restructure into a New Paradigm..23
New Acquisition ..26
Challenges ...26

CONCLUSIONS..28

GLOSSARY ..31

iv

BIBLIOGRAPHY..32

v

List of Illustrations

Page

Figure 1. Software Understanding Versus Programmer Unfamiliarity ..9

Figure 2 - Cost of Change versus Cost of Maintenance ..20

vi

List of Tables

Page

Table 1. Information on Cheyenne Mountain Upgrade ..4

Table 2 – COCOMO II and SRAH Factors ...16

Table 3 – Factors in the Cost of Software Maintenance..17

vii

Preface

I’d like to acknowledge the advice I got on this paper from my faculty research advisor,

LtCol Jerry Quenneville. Thanks, Q, for your insights, direction, and inputs. You steered me

towards the right blend of analysis, synthesis, theory, and practicality. I enjoyed our

meetings…especially the late afternoon ones…

I also need to acknowledge all the support I got from my friends here at ACSC. Thanks,

Fritz and Mike for making dinners for me while I put the finishing touches on my paper. Thanks

Doug, Chris, and Mary, for letting me bounce my blue sky ideas off of you. Thanks to Seminar

4 for your support…except Todd…no one should finish their paper that early. Thanks to

Seminar 007 for your support…thanks, Bull, for keeping me on course and on glideslope.

Thanks also go to my friends and family that supported me.

Finally, I’d like to dedicate this paper to my Mom and Dad. Thanks for your support. I love

you!

viii

AU/ACSC/173/2000-04

Abstract

As the Air Force enters the 21st century, the software that runs our information systems

continues to age and become harder to maintain. Organizations that maintain this legacy

software are faced with the challenge of rising software maintenance costs. This paper presents a

spectrum of software maintenance options that can be used to reduce the cost of maintenance.

The software understanding and programmer unfamiliarity factors from the COCOMO II model

are compared to graphically show the effect good software understandability can have on the

cost of maintenance. The structure, application clarity, and self-descriptiveness of a software

module affect its understandability. The cost of software maintenance is quantified by combining

factors from the COCOMO II model and the Software Reengineering Assessment Handbook

reengineering decision model that affect understandability. A spectrum of software maintenance

options include status quo, redocument, reverse engineer, translate source code, restructure

within a paradigm, restructure into a new paradigm, and new acquisition is presented. The

benefits of each option are presented in terms of their effect on understandability. Organizations

faced with rising maintenance costs should consider the full spectrum of software maintenance

options before choosing to replace a software module through new acquisition. By using

automated tools, some of the reengineering options present a cost-effective way to reduce the

cost of software maintenance.

1

Part 1

Introduction

As we enter the 21st century, one thing is certain: aerospace power will become
even more reliant on information as the cornerstone for every military operation
we are ordered to undertake.

—Lt Gen William Donahue, HQ USAF/SC

As the importance of information grows, the Air Force becomes more reliant on the

computer software that processes this information. As this computer software ages and becomes

more costly to maintain, the Air Force faces the challenge of finding ways to reduce the cost of

software maintenance.

This paper presents several options that can reduce maintenance costs. These options

provide a spectrum of software maintenance options that range from little or no change to a

software module up to complete replacement of the module. In order to show the effect of these

options, the paper first describes how the understandability of a software module relates to the

difficulty in maintaining the module and thus the cost of maintenance. By examining a software

cost estimation model and a reengineering decision model, the factors that affect

understandability can be extracted. These factors are presented as one way to quantify the cost

of software maintenance. The benefits of using each option in the software maintenance

spectrum are described in terms of these factors. Organizations that are faced with maintaining

aging software can consider this spectrum of options as alternatives to wholesale replacement of

their software.

2

Background and significance of the problem

As Air Force computer software applications grow older, they generally become harder to

maintain. As changes and corrections are made to the software applications, the legacy code

endures patch after patch. Often the aging application becomes so delicate that even the smallest

change can create unpredictable side effects. There are several options short of replacing

software modules that may reduce maintenance costs. These options come under the general

heading of reengineering and include redocumentation, reverse engineering, translate source

code, and restructuring. Redocumentation is a process of generating documentation for the

software modules either totally automatically or with some help from the programmer. Reverse

engineering is the process of extracting the existing design from a software module in order to

help understand what the module is doing. The design is considered to be at a higher level of

abstraction than the software itself. Translating the source code can convert a module from an

old programming language into a more modern language. Restructuring is used to reorganize the

software module making it easier to understand and maintain. A final choice for change is to use

the acquisition process to buy a new software application that duplicates the functionality of the

aging software application. If done properly, any of these options will reduce the cost of

maintenance for a software application.

To appreciate the magnitude of this problem, consider the fact that currently, 30% of the

DoD software budget is spent on development, while 70% is spent on maintenance of legacy

code.1 Of these maintenance costs, 50% of the resources are spent on understanding the design

and specification of existing systems.2 Existing and emerging reengineering tools, some of

which are fully automated, can help reduce these maintenance costs by providing better

documentation of the code through redocumentation, by providing design information through

3

reverse engineering, and by providing a better structure for the code through restructuring. If

analysis shows the reengineering effort will not be cost-effective, the final option is to consider

replacing the legacy code through new acquisition. All these methods of reengineering or new

acquisition are meant to reduce the cost of software maintenance.

Cheyenne Mountain Upgrade (CMU) Example

This section presents one example of how costly the new acquisition of a computer

information system can be. The North American Aerospace Defense Command (NORAD) is

responsible for providing warning of any missile, air, or space attack. The warning system

consists of worldwide missile, atmospheric, and space warning sensors.3 The hub of this system

is located in the Cheyenne Mountain Complex in Colorado Springs, CO. Here, in the Missile

Warning Center, the data from all the sensors is processed by computer software and converted

into useful information that can be displayed and used for decision making. This system has

been operational since 1979 and work began almost immediately to replace and upgrade the

computer software.

The Cheyenne Mountain Upgrade (CMU) program was formally started in 1989 under

Congressional and Defense Acquisition Board direction.4 By 1994, the CMU program was eight

years behind schedule and $792 million over budget.5 The software programs that had been

delivered were not reliable enough to meet operational needs. As a result, they had to be run

simultaneously with the old software programs costing the Air Force an additional $22 million a

year. The original replacement systems were scheduled for completion in 1987 at a cost of $968

million.6 This estimate was moved back to a completion date of 1995 at a total cost of $1.58

billion. The CMU program was finally delivered in 1998 at a cost of $1.7 billion. Table 1 shows

more information on the CMU program.

4

Table 1. Information on Cheyenne Mountain Upgrade

Air Force ACAT IC Program Cheyenne Mountain Upgrade
Total Number of Systems One of a Kind
Prime Contractor Several
Total Program Cost (TY$) $1770M
Average Unit Cost (TY$) $1770M
Full-rate production 1QFY94
Rebaselined 4QFY94
Integrated Mission IOT&E 4QFY94
Service Certified Y2K Compliant No (In progress)
Source: OSD FY98 Annual Report.7

The CMU program is an example of how long it can take and how much money can be

spent on acquisition of a new software system. With over 2 million source lines of code (SLOC),

the CMU program is a very large, complex software system. After almost 10 years and $1.7

billion, the CMU program was finally completed in 1998. The CMU program was intended to

replace the software systems previously running in the Cheyenne Mountain Complex. Was new

acquisition the only answer to the maintenance problems? Are there other, less time-consuming

and less costly options for improving legacy software? After examining factors that drive the

cost of software maintenance, this paper presents options across the spectrum of software

maintenance that may be more cost-effective than new acquisition.

Notes

1 Proceedings of the Santa Barbara I Reengineering working group, July 1997, Software
Technology Support Center.

2 Ibid.
3 GAO AIMD-94-175. Attack Warning: Status of the Cheyenne Mountain Upgrade

Program, Letter Report, 09/01/94, US General Accounting Office.
4 OSD FY98 Annual Report, Office of the Secretary of Defense
5 GAO AIMD-94-175, Cheyenne Mountain Upgrade
6 Ibid.
7 OSD FY98 Annual Report

5

Part 2

The Importance of Understandability

The computer allows you to make mistakes faster than any other invention, with
the possible exception of handguns and tequila.

—Mitch Ratcliffe

In this part of the paper the understandability of a software module is presented as a key

factor in the cost of software maintenance. If it is hard to understand a software module, it will

take longer to fix problems with it, even for a programmer that is quite familiar with the module.

This drives up the cost of software maintenance. This effect is presented graphically, showing

the significant impact of understandability on a 3000-line software module. Defining and

quantifying understandability provides a good start for quantifying the cost of software

maintenance.

Software Understanding

The COCOMO II model is a software development tool that can be used to estimate the cost

of a new software system. The model estimates the size (in source lines of code or SLOC) and

development time (in person-months) required for each software module in the new system.1

The COCOMO II model includes a formula for estimating the cost of maintaining a newly

developed software module.2 The first part of this formula is based on the idea of software

understanding, i.e. if the software being maintained is difficult to understand, then more effort

6

will be required to maintain it. The software understanding (SU) factor from the COCOMO II

model provides a basis for quantifying the understandability of a software module. If the SU

factor is high, then the module is easy to understand; if the SU factor is low, then the module is

hard to understand. Three factors are considered when determining the value of SU for a

software module:

1. Structure. Is the code modular and highly cohesive?
2. Application Clarity. Is the software a good model of the application?
3. Self-Descriptiveness. Is the code well organized and well documented?

The structure refers to the modularity and cohesion of a software module. Modularity

includes such things as whether the module is one large monolithic program or has been broken

into smaller, more reasonably sized modules that each implement part of the solution. Structure

is also affected by the number of connections to other modules (coupling), the number of logical

functions being performed in the module (cohesion), and the complexity of the software in the

module as measured by a complexity metric (reference needed). The application clarity aspect

refers to how well the software module models the application it implements. The self-

descriptiveness aspect refers to how well the names given to the variables and sub-programs in

the module relate to or match the function being performed. Names that are just single letters of

the alphabet are generally not good variable or sub-program names. Self-descriptiveness also

refers to the documentation available for the software module.

In COCOMO II, the possible values for the SU factor are:

1. Very high – strong modularity, high cohesion, great documentation
2. High – low coupling, high cohesion, well commented
3. Nominal – reasonable structure, moderately good comments
4. Low – high coupling, low cohesion, some useful comments, and documentation
5. Very low – spaghetti code, very low cohesion, obscure code and documentation

7

By examining the structure, application clarity, and self-descriptiveness, a software analyst

can determine if the SU factor for a module is very high, low, nominal, etc. This determination

is subjective and is based on the opinion of the analyst. There are ways to measure the coupling

and cohesion of a module, but the overall quality of the modularity, structure, and documentation

is still subjective. There are also cases when the software module does not fall neatly into one of

the values presented above. For example, a module may have strong modularity and terrible

documentation. In these cases, the analyst must make a subjective decision about this module.

The SU factor provides a good start for quantifying the understandability of a software module,

but more objective measurements are needed.

Programmer Unfamiliarity

The COCOMO II model also includes programmer unfamiliarity in the formula for

calculating the cost of maintaining a software module. If the programmers maintaining the

software are unfamiliar with a software module, then more effort will be required to maintain it.

This unfamiliarity refers simply to the experience a programmer has with a particular module.

The effect on the cost of maintenance of the programmer’s unfamiliarity with the programming

language being used or proper maintenance techniques are considered in Part 3 below. The

possible values for the programmer unfamiliarity (UNFM) include completely familiar, mostly

familiar, somewhat familiar, considerably familiar, mostly unfamiliar, and completely

unfamiliar. These values identify how unfamiliar a programmer is with a particular software

module and are used in COCOMO II to estimate the cost of maintaining it.

8

The Importance of Understandability

This section of the paper compares software understanding and programmer unfamiliarity to

show their effect on the cost of software maintenance. By using different values for the software

understanding (SU) and programmer unfamiliarity (UNFM) factors to calculate the cost of

maintenance, the positive effect understandability has on the cost of maintenance can be shown

graphically. The more understandable a software module is, the less it costs to maintain it

regardless of how familiar a programmer is with the module.

To show the relationship between SU and UNFM, actual values for these factors were used

to calculate different cost of maintenance values. The CostarTM system is a software product that

implements the COCOMO II model and was used to determine these cost of maintenance

values.3 In the CostarTM system, the cost of maintenance for a particular software module is

expressed in person-months. By fixing the value of SU in a series of data points and changing

UNFM from completely familiar to completely unfamiliar, the effect of understandability on the

cost of maintenance can be demonstrated graphically.

The available demonstration version of the CostarTM system limited the size of the software

module to 3000 SLOC. The result is that the values calculated for the cost of maintenance are

not substantially different from each other, i.e. they may differ by only a few person-months. If

a module that is much larger is considered, the subsequent values for the cost of maintenance

will also be much larger and the differences between them more substantial4.

Figure 1 shows the relationship between SU and UNFM. In the figure, the Y-axis is the cost

of maintaining the software module as expressed in person-months. The X-axis is the value of

the programmer unfamiliarity from completely familiar (value 1 on the left) to completely

unfamiliar (value 6 on the right). The lines in the chart show the different data series where the

9

value of SU was held constant and the value of UNFM was changed. The lowest line is where

SU had the value very high, the next line up is where SU had the value high, and so on. The top

line is where SU had the value very low.

Figure 1. Software Understanding Versus Programmer Unfamiliarity

As shown in the figure, if the value of SU is very high, the effect of the level of programmer

unfamiliarity for the module is reduced. This means if the understandability for a module is

good, i.e. the structure, application clarity, and self-descriptiveness for the module are all very

well done, then the cost of maintenance can be reduced. For example, if the SU factor is very

high, but a maintenance programmer is completely unfamiliar with a software module, the cost

of maintenance is still relatively low (see Figure 1). Comparatively, if the SU factor is very low

Maintenance Cost

0
2
4
6
8

10
12
14
16

1 2 3 4 5 6

Programmer Unfamiliarity

P
e

rs
o

n
-M

o
n

th
s

Very Low

Low

Nominal

High

Very High

10

and the programmer is completely unfamiliar with the module, then the cost of maintenance is

relatively high (see Figure 1).

In this way, the quality of the structure, application clarity, and self-descriptiveness of a

software module can reduce the effects of programmer unfamiliarity. If the understandability of

a software module is good, then a maintenance programmer with any level of familiarity can

maintain the module and the cost of maintenance remains relatively low. The factors that affect

structure, application clarity, and self-descriptiveness must be examined in further detail in order

to help quantify the cost of software maintenance.

Notes

1 Barry Boehm and Bradford Clark, Cost Models for Future Software Life Cycle Processes:
COCOMO II, USC Center for Software Engineering, Annals of Software Engineering, 1995

2 Ibid.
3 CostarTM system, based on COCOMO II model, www.softstarsystems.com
4 Ibid. The formula for determining the cost of maintenance values was not readily available

in the Costar documentation, so it was not possible to tell if the cost grows in a linear or
exponential fashion.

11

Part 3

Quantifying the Cost of Software Maintenance

“No scene from prehistory is quite so vivid as that of the mortal struggles of great
beasts in the tar pits…Large system programming has over the past decade been
such a tar pit, and many great and powerful beasts have thrashed violently in
it…”

—Fred Brooks

This part of the paper describes several factors that can help quantify the cost of maintaining

software systems. As seen in the previous section, the understandability of a software module is

key to the cost of maintaining that module. Factors from the COCOMO II and Software

Reengineering Assessment Handbook (SRAH) software cost estimation models that relate to the

understandability of a software module are described in more detail here. These factors are

collected as a list that can be used to help quantify the cost of maintaining software modules.

The COCOMO II Development Cost Model

The COCOMO II model includes many factors that can have an effect on the

understandability of a software module. Normally, the COCOMO II model is used to estimate

the cost of developing a system of software modules by calculating the length of time required

for development and the source lines of code (SLOC) needed for the system. 1 For a more

detailed description of the entire COCOMO II model, the reader is referred to Boehm2. Since the

understandability of a software module is affected by its structure, application clarity, and self-

12

descriptiveness, the factors from COCOMO II that affect them are examined below. These

COCOMO II factors are used to help quantify the cost of software maintenance.

For example, the product complexity can affect how well the module models the application,

which affects application clarity. If the software module being developed is very complex,

including many different functions, input screens, and output displays, then, if not designed well,

it may be difficult to understand which part of the application is being implemented by which

part of the software module. There are programming techniques that can be used to build these

complex things in the most efficient manner possible, such as modeling them as objects using

techniques from the Object-Oriented Paradigm (OOP).3 But, the degree to which these

techniques are used properly and effectively will determine how well a software module models

an application. In this way, the complexity of the software module has a direct impact on the

application clarity.

The required reusability of a software module may improve the structure and self-

descriptiveness of the module. If a module is built with the intention of reusing it in future

development, then the module will typically be well documented and the inputs, functionality,

and outputs of the module will be well defined. This means a module built with reusability in

mind will have better structure and better descriptiveness.

The amount of documentation required when developing a module clearly affects the self-

descriptiveness of the module. A well-documented software module is more understandable

because questions about the functionality of the module can be answered by this documentation.

Requiring good documentation during the development of a software module is the best way to

get accurate, useful documentation.

13

The capability of the programmer has a large effect on the structure, application clarity, and

the self-descriptiveness of a software module. If the programmer is not familiar with the best

techniques for analysis and design, or does not have good skill at building software modules,

then the structure and application clarity of the module will suffer. The programmer’s choice for

variable and procedure names will have a large impact on the self-descriptiveness as well.

The development tools used may impact the structure and application clarity of the software

module. If Computer-Aided Software Engineering (CASE) tools are used for the development,

such as Rational ApexTM, the structure and application clarity of the software module will most

likely be good.4

The timeline constraints can have major impacts on the structure and descriptiveness of the

software module. If the development of the software module is under tight time constraints

shortcuts in development and documentation may be taken. These shortcuts may degrade the

structure of the software module and cause the documentation to be missing or incomplete.

All these factors from the COCOMO II model relate to the understandability of a software

module and affect the cost of maintenance.

The SRAH Reengineering Decision Model

The SRAH helps organizations decide when to reengineer legacy software modules. It

supports the analysis of organizational, technical, and economic factors in this decision process.

Several factors included in the SRAH can affect the understandability of a software module. The

SRAH model examines many factors to decide whether or not to reengineer.5 The factors that

are used to decide whether or not a software module has become too hard to maintain can be

used to quantify the cost of maintaining that module. These factors can be related directly to the

three factors of understandability, i.e. structure, application clarity, and self-descriptiveness.

14

For example, the age of a software module may indicate how modern the structure of the

module is. Newer modules were probably built using good, structured programming techniques.

Older modules may have been built with poor structures and then maintained by several different

programmers over time. If the software has been developed within the last five years, then

chances are good that it was developed using a modern language and that the development staff

is still available to answer maintenance questions.6 As software modules age, they may be

changed and fixed by several different programmers. As this continues, the structure of the

module tends to suffer and become harder to understand.

Complexity measurement tools measure the complexity of a software module by looking at

the structure of a software module. Modules with many decision points and branches are

considered complex, so the complexity of a software module is directly related to its structure.

Modules with complex structures are harder to understand because of the difficulty in following

the decision points and branches. As the complexity of a software module increases it becomes

harder to understand.

The language factor relates directly to the structure of a module as well as the application

clarity. Older, lower-level languages such as FORTRAN do not provide many tools for

expressing the solution to a problem in abstract, general ways.7 This means the overall structure

of the module will be based on low-level, detailed constructs and it may be hard to understand

which part of the application this module implements. Newer, higher-level languages such as

Ada, Java, and C++ provide the programmer with many more tools for abstraction.8 If the

application being modeled is an airplane, for example, Ada allows the programmer to associate

the data and behavior of the parts of the airplane together in one abstract unit. This improves the

structure of modules if done properly, because the solution to a problem can be split into logical

15

pieces that correspond to the application being modeled. Using a newer, higher-level language

improves the structure and application clarity of software modules.

As discussed in the previous section, the documentation provided for a module affects its

understandability. If the documentation is missing or completely inaccurate, then the

programmer must rely on his/her own ability to read the code and determine the functionality of

the software module. The documentation for a software module is a big part of its self-

descriptiveness and its understandability.

The personnel knowledge affects the structure and the descriptiveness of the software

module. If the programmer maintaining the software module is not an experienced maintenance

programmer, he/she may degrade the structure of the module or unnecessarily add to its

complexity. If different programmers maintain a single module over time, their differing

personal techniques will tend to slowly degrade its structure as well. If the documentation is not

changed along with the software module, it will slowly become inaccurate and of little use.

These factors from the SRAH model affect the structure, application clarity, or

descriptiveness of a software module, thus affecting the understandability of the module.

The Cost of Software Maintenance

The factors from the COCOMO II and SRAH models that affect the understandability of a

software module provide a good way to quantify the cost of software maintenance. The

understandability of a software module has a large effect on the cost of its maintenance (as

shown in Part 2 above). The COCOMO II and SRAH factors affect understandability because of

their effect on the structure, application clarity, and self-descriptiveness of a software module.

This part of the paper lists these factors and describes how they quantify the cost of software

maintenance.

16

Table 2 – COCOMO II and SRAH Factors

COCOMO II SRAH
Product complexity Complexity
Required reusability
Documentation required Documentation
Capability of the programmer Personnel knowledge
Development tools used Language
Timeline constraints

Age

The table above shows the factors from the COCOMO II and SRAH models that affect

understandability. The factors have been arranged in the table in order to highlight similarities.

For example, the SRAH factor personnel knowledge is similar to the COCOMO II factor of

capability of the programmer. Even though the COCOMO II model is intended to be used in

software development and the SRAH model is intended for maintenance and reengineering, they

both include similar factors that affect the understandability of a software module. These factors

from both models can be combined to quantify the cost of software maintenance.

The following table lists the factors that affect and quantify the cost of software

maintenance. In the table, the complexity factor refers to the sophistication of the module in

terms of menus, input/output, and functionality, as well as, the complexity of the structure as

measured by complexity measurement tools. The reusability factor refers to how easily a

software module could be adapted for reuse in another application. The documentation factor

refers to the quality of the original documentation effort and the quality of the existing

documentation. The capability of the programmer factor refers to the expertise of the original

designer as well as the programmers that maintain the software module. The development tool

and language use factor refers to the prudent use of CASE tools, programming environments,

and modern languages in development and maintenance. The timeline constraints factor refers

17

to the effect of working under short timeline pressures. The age factor refers to how long the

module has been maintained.

Table 3 – Factors in the Cost of Software Maintenance

Factor Decrease Increase
Complexity Low High
Reusability High Low
Documentation High Low
Capability of the programmer High Low
Development tool and Language use Good Poor
Timeline constraints Few Many
Age Young Old

For all these factors, the values in the decrease column indicate how this factor will help

decrease the cost of maintenance. For example, low complexity helps decrease the cost of

maintenance. Similarly, the values in the increase column indicate how the factor will drive up

the cost of maintenance. For example, low reusability would increase the cost of maintaining the

module.

The factors listed in Table 3 affect the understandability of software modules and quantify

the cost of software maintenance. These factors were built by examining factors from both the

COCOMO II software development model and the SRAH reengineering decision model. Since

the factors in Table 3 affect the structure, application clarity, or self-descriptiveness of a software

module, they can increase or decrease the cost of maintenance. These factors will be used in the

following section to quantify the benefits of each option across the software maintenance

spectrum.

18

Notes

1 Barry Boehm and Bradford Clark, Cost Models for Future Software Life Cycle Processes:
COCOMO II, USC Center for Software Engineering, Annals of Software Engineering, 1995.

2 Ibid.
3 Grady Booch. Object-Oriented Analysis and Design (2nd Edition). Redwood City, CA:

The Benjamin/Cummings Publishing Co, 1994.
4 Rational Apex, product of Rational Software Corporation, www.rational.com
5. The Software Reengineering Assessment Handbook (SRAH). JLC-HDBK-SRAH.

March 1997. In conjunction with the Software Technology Support Center (STSC)
6 Ibid.
7 REFINE/FORTRAN user’s guide, Reasoning Systems Inc, Palo Alto, CA. 1994.
8 J.G.P. Barnes, Programming in Ada, Wokingham, England: Addison-Wesley, 1994.

Deitel & Deitel, How to Program Java, Prentice Hall, Upper Saddle River, NJ, 1998. Bjarne
Stroustrup, The C++ Programming Language, ATT Bell Labs, New Jersey, Jul 1987.

19

Part 4

The Software Maintenance Spectrum

Computer /n./: a device designed to speed and automate errors.

—Jargon File

This part of the paper presents a spectrum of options for maintaining legacy software

modules. The benefits of these options are quantified in terms of how they can decrease the cost

of maintenance. Each option’s effect on the factors in the cost of maintenance (presented in

Table 3) will be discussed below. These options provide a full spectrum of choices for

organizations maintaining software modules.

The SRAH report lists six options for reengineering: redocument, reverse engineer,

translate source code, data reengineer, restructure, and retarget.1 The data reengineer option,

which refers to reengineering database products, and the retarget option, which is a process used

to move a software module from one hardware platform to another, were not included in this

study. Thus, the options considered in this study were limited to redocument, reverse engineer,

translate source code, and restructure.

The restructure option can be further broken down based on whether or not the restructuring

will shift the software module from one paradigm to another. A programming paradigm refers

to the way in which a software module is designed and implemented. Structured analysis and

design, typically based on functionality, is used in the Imperative paradigm with such languages

as Pascal, C, and FORTRAN.2 Object-oriented analysis and design is used in the Object-

20

Oriented Paradigm with such languages as Ada, Java, and C++.3 Recently, restructuring tools

have been developed to convert modules from the Imperative paradigm to the Object-Oriented

Paradigm.4 Thus, the restructure option is broken into restructure within a paradigm and

restructure into a new paradigm.

The SRAH report also lists two classic maintenance strategies: redevelopment and status

quo.5 The redevelopment option is called new acquisition in this study in order to tie this option

directly to the Air Force acquisition process. The status quo option means to continue

maintaining the software module without reengineering or doing new acquisition.

The spectrum of software maintenance considered in this study includes status quo,

redocument, reverse engineer, translate source code, restructure within a paradigm, restructure

into a new paradigm, and new acquisition. These options are listed from lowest to highest in

order of the amount of change (and consequent cost) the existing software module requires.

Change

Maintenance

Status
Quo

$

New
Acquisition

Figure 2 - Cost of Change versus Cost of Maintenance

In relative terms, Figure 2 shows the effect on the amount and cost of change versus the

effect on the cost of maintenance as the options move across the spectrum from status quo to

new acquisition. As more time and money is invested, the cost of maintenance is expected to

21

decline. The benefits of these options are discussed below in terms of their effect on

understandability (Figure 1) and the factors that affect the cost of maintenance (Table 3).

Status Quo

The status quo option, which means no reengineering or new acquisition will be done, is a

reasonable choice for the maintenance of software modules with little remaining life. The SRAH

model states that if a software module is expected to be used for three years or less, the cost of

reengineering the module may not be recovered in the life of the module and the organization

should consider not reengineering it.6

Redocument

The redocument option involves generating new documentation for a software module.

Some tools are available to help automate this process.7 The benefit of redocumenting is that it

improves the documentation factor (see Table 3) and improves a software module’s self-

descriptiveness. This improves the understandability of a software module. For example, if the

understandability of a software module is low, redocumenting may make the understandability

nominal or high. As shown in Figure 1, the effects of programmer unfamiliarity are reduced

when understandability is high and the cost of maintenance will be reduced. The decision to

redocument is subjective and based on analysis of the current documentation. If the current

documentation is poor and redocumentation is done properly, the redocument option may be an

effective way to reduce the cost of maintaining this module.

22

Reverse Engineer

The reverse engineer option involves extracting design-level information from the software

module and may be done automatically or semi-automatically.8 Design-level information may

include the current organization of and communication between modules in the system. It may

also include descriptions of the expected input and output of a module. The design-level

information can be added to the module’s documentation and may improve the documentation

factor (see Table 3) of the module. This can improve the application clarity or self-

descriptiveness of the module, thus improving the understandability. As shown in Figure 1,

improving the understandability will reduce the cost of maintenance. The amount of

improvement gained from reverse engineering is subjective and differs for each module. If the

application clarity and self-descriptiveness can be improved, the reverse engineering option may

be a cost-effective means of reducing the cost of maintenance.

Translate Source Code

The translate source code option, which involves converting the software module from one

programming language to another, may be done automatically and is a low-level transformation.9

Translating the source code is not considered a significant or beneficial improvement because it

is usually obvious that the finished product has been translated from another language.10 Unless

careful steps are taken to take advantage of the new language, the improvement will be minimal.

However, translating the source code may positively affect the capability of the programmer

factor (see Table 3) if the programmer is familiar with the new language. It may also affect the

development tool and language use factor (see Table 3) if there are tools available for the new

language. The translate source code option is not the most desirable option, but it may have

positive affects on factors that will reduce the cost of maintenance.

23

Restructure within a Paradigm

The restructure within a paradigm option involves changing the structure of a module or set

of modules while keeping them in the same programming language paradigm. For example, a

system that includes modules written in the FORTRAN programming language could be

restructured to improve the structure of the modules while keeping them in FORTRAN language.

These improvements could include such things as improving the coupling and cohesion of the

modules or removing code that is not being used. These changes may improve the complexity of

the modules, and their reusability, thus improving their understandability. As shown in Figure 1,

this will reduce the cost of maintenance. The positive effects restructuring has on the

understandability of software modules make it a viable option for reducing the cost of software

maintenance.

Restructure into a New Paradigm

The restructure into a new paradigm option involves restructuring a module or collection of

modules and moving them from one programming language paradigm to another. This process

is challenging because the fundamental ways of solving the problem change from one paradigm

to another. Recently, the Object-Oriented Paradigm (OOP) with the Ada, Java, and C++

languages has become more widely used. This part of the paper will briefly examine the OOP

and quantify the benefits of using the OOP in terms of the factors that affect the cost of

maintenance.

The OOP is based on the ideas of objects, classes, methods, and inheritance.11 An object

models the data and behavior of something from the application domain. For example, when

building a flight simulator, airplanes, instruments, and airports are objects from the application

domain. Objects are built from classes which define the data, i.e. attributes for the objects. For

24

example, the number of engines is an attribute of an airplane. Methods are the pieces of

programming language code which implement the behavior of the object such as “bank left” for

an airplane. Inheritance is an abstraction mechanism that allows common attributes and

behavior to be shared between classes. This brief description of the OOP is meant to provide a

common framework for discussion. For further information on the OOP, the reader is referred to

Booch.12

One of the benefits of the OOP includes its inherent ability to model the real world

application using the terminology from the application domain.13 Classes and objects get their

names from the application domain, which builds a direct link from the application domain to the

software being developed. This link improves the documentation factor (see Table 3) by

inherently providing documentation of what object the software module is modeling. The

inherent documentation has a positive effect on the application clarity and improves the

understandability of the software module.

For similar reasons, the self-descriptiveness of a software module can be improved because

of the link between the application domain and the classes and objects being developed. By

naming the classes and objects in the OOP software after objects in the application domain, the

classes and objects can be more easily understood. This naming convention helps a maintenance

programmer understand the intended functionality of these parts of the software system. The

names help document the functionality of the software increasing the self-descriptiveness and

understandability of the module.

Using the restructure into a new paradigm option may increase the reusability of software

modules. If done properly, the interface to the classes and objects that implement these modules

will become clearer. This may increase the chances that another programmer will understand the

25

functionality and can reuse the classes and objects for another application. For example, an

airplane class could be adapted from a flight simulator and reused in an air traffic control system.

Improving the reusability factor (see Table 3) improves the understandability of the software

module and can help reduce the cost of maintaining the module.

The restructure into a new paradigm option may also have a positive effect on

understandability base on the expertise of the maintenance programmers. For example, if an

organization has programmers that are predominantly skilled at maintaining OOP software, then

converting from the Imperative paradigm to the OOP will allow these programmers to use their

skills more effectively. This improves the capability of the programmer factor (see Table 3) and

may have a positive effect on the understandability of the software modules and reduce the cost

of maintenance.

The restructure into a new paradigm option may also improve the understandability of the

software modules because of the tools available for maintaining OOP software. For example, an

organization can use tools to edit and maintain the attributes and methods of classes and the

overall structure of the new OOP system. This will increase the development tool and language

use factor (see Table 3) and improve the understandability of the modules to reduce the cost of

maintenance.

The benefits of restructuring software modules into the OOP include improvements in the

application clarity, self-descriptiveness, inherent documentation, reusability, capability of the

programmer, and tools available for maintenance. All these factors combine to improve the

understandability of the software modules. As presented in Figure 1, improving the

understandability helps reduce the cost of software maintenance.

26

Because of the many different factors that restructuring to the OOP can affect, there may be

large improvements in the understandability of the software modules. For example, if properly

done restructuring to the OOP can change the understandability from very low to high. Some

systems are available for automatically or semi-automatically converting from the Imperative

paradigm to the OOP. If these systems are used, the restructure into a new paradigm option can

be a cost-effective way to reduce the cost of software maintenance.

New Acquisition

If a software module is replaced through new acquisition, then the cost of maintenance for

this new module should be reduced. If done properly, all the factors from Table 3 can be

improved and the module can have very good understandability. The new acquisition option has

the most positive effect on the cost of maintenance, but it also makes the most changes and may

take the most time and money (see Figure 2). The Cheyenne Mountain Upgrade example (see

Table 1) demonstrates how new acquisition projects may take several years and cost millions of

dollars. An organization should carefully consider the benefit versus cost of using the new

acquisition option.

Challenges

Some of the challenges with using the entire software maintenance spectrum include

technology transfer, quality, and scalability. Some of the reengineering techniques are only

academic products and are not ready for commercial use. There must be some investment in the

transfer of these ideas and technology to industry before they can be used. If the quality of the

reengineered product is poor, the cost of maintenance may not be reduced. Some of the

reengineering techniques are not able to handle large software systems. For some systems, it is

27

impossible to operate on a system the size of the Cheyenne Mountain Upgrade with its 2 million

lines of code. These challenges continue to be addressed as the reengineering technologies

mature.

Notes

1 The Software Reengineering Assessment Handbook (SRAH). JLC-HDBK-SRAH. March
1997. In conjunction with the Software Technology Support Center (STSC)

2 Herbert L. Dershem and Michael J. Jipping, Programming Languages: Structures and
Models. Boston, MA: PWS Publishing Co, 1993.

3 Grady Booch. Object-Oriented Analysis and Design (2nd Edition). Redwood City, CA:
The Benjamin/Cummings Publishing Co, 1994.

4 Ivar Jacobson and Fredrik Lindstrom. Reengineering Old Systems to an Object-Oriented
Architecture. OOPSLA Proceedings, 1991. Phillip Newcomb,. Reengineering Procedural into
Object-Oriented Systems. In 2nd Working Conference on Reverse Engineering, Los Alamitos,
CA. IEEE Computer Society Press, Jul 1995. Ricky E. Sward, Extracting Functionally
Equivalent Object-Oriented Designs from Legacy Imperative Code. PhD Dissertation. Air
Force Institute of Technology. 1997.

5 SRAH
6 Ibid.
7 +1Reports program, +1 Software Engineering, Carmarillo, CA, www.plus-one.com
8 Cradle system, Craven House, Cumbria, LA, www.threesl.com
9 Robert Vienneau, A Review of Non-Ada to Ada Conversions, Report to Rome Laboratory,

RL/C3C, Rome, NY, August 1993.
10 Ricky E. Sward, PhD Dissertation.
11 Grady Booch. Object-Oriented Analysis and Design
12 Ibid.
13 Ibid.

28

Part 5

Conclusions

I have traveled the length and breadth of this country and talked with the best
people, and I can assure you that data processing is a fad that won’t last out the
year.

—Prentice-Hall Editor, 1957

As the Air Force enters the 21st century, information processing is here to stay. The Air

Force continues to pursue information superiority in the battlespace. As our computer software

follows us kicking and screaming into the 21st century, we will continue to face the task of

maintaining legacy software. Air Force organizations should consider the entire spectrum of

software maintenance options when maintaining legacy software.

This paper used the COCOMO II software development cost estimation model and the

SRAH reengineering decision model to demonstrate the importance of understandability. Figure

1 showed how understandability can affect the cost of software maintenance. If a software

module is easy to understand, the effects of unfamiliar programmers maintaining the module can

be minimized. The structure, application clarity, and self-descriptiveness of a software module

contribute directly to its understandability. Several factors from the COCOMO II and SRAH

models1 were culled out and presented as factors that affect these three things. These factors

were combined and presented in Table 3 as those factors that quantify the cost of software

maintenance.

29

The full spectrum of software maintenance options was presented and benefits of each

option were quantified in terms of factors from Table 3. These options include status quo,

redocument, reverse engineer, translate source code, restructure in the same paradigm,

restructure into a new paradigm, and new acquisition. Figure 2 showed how as more time and

money is spent along this spectrum of options, the cost of maintenance is expected to decline.

Each option has unique effects on the factors that drive the cost of software maintenance and the

benefit of each option was presented in terms of these factors.

Organizations that are faced with the challenge of maintaining legacy software should

consider the full spectrum of software maintenance options. Reengineering techniques offer the

ability to redocument poorly documented code, reverse engineer the design of the code, translate

the source code to a more maintainable language, restructure the code in the same paradigm,

restructure the code into a new paradigm, or buy new software. If automated systems are used to

accomplish these tasks, in most cases they will provide more cost-effective ways to reduce the

cost of software maintenance without requiring total replacement of the module. In this way,

organizations can avoid the cost of time and money spent on new acquisition. Organizations

need to consider the effect these options will have on their software modules in order to reduce

the cost of software maintenance (see Table 3).

The Air Force faces many challenges in the 21st century and maintaining legacy software in

an age of ever-increasing dependence on information is one of them. Organizations faced with

the challenge of maintaining legacy software should consider the full spectrum of reengineering

options before pursuing costly new acquisitions.

30

Notes

1 The Software Reengineering Assessment Handbook (SRAH). JLC-HDBK-SRAH. March
1997. In conjunction with the Software Technology Support Center (STSC) Barry Boehm and
Bradford Clark, Cost Models for Future Software Life Cycle Processes: COCOMO II, USC
Center for Software Engineering, Annals of Software Engineering, 1995.

31

Glossary

Cohesion. The extent to which a software module is focused on performing a single function. A
module with good cohesion will focus on one or two tightly related functions. A module
with poor cohesion will perform many unrelated functions.

Coupling. The extent to which a software module has connections to other software modules.
This can be measured by counting the number of calls the software module makes to other
modules.

Data reengineering. Tools that perform all the reengineering functions associated with source
code (reverse engineering, forward engineering, translation, redocumentation,
restructuring/normalization, and retargeting) but act upon data files.

Domain objects. Things in the problem domain that take on identity and behavior. For
example, an aircraft has a unique identity, e.g. a tail number, and behavior, e.g. level flight.

Forward Engineering. Forward engineering is the set of engineering activities that consume
the products and artifacts derived from legacy software and new requirements to produce a
new target system.

Legacy code. Aging software applications that are hard to maintain. They are often complex,
unstructured, and include no documentation.

Object-oriented programming. The programming language paradigm that designs software
applications to model domain objects with data and behavior.

Redocumentation. The process of analyzing the system to produce support documentation in
various forms including users manuals and reformatting the systems' source code listings. A
special case of redocumentation tools are reformatting tools. Otherwise known as "pretty
printers", reformatters make source code indentation, bolding, capitalization, etc. consistent
thus making the source code more readable.

Reengineering The examination and alteration of an existing subject system to reconstitute it in
a new form. This process encompasses a combination of sub-processes such as reverse
engineering, restructuring, redocumentation, forward engineering, and retargeting.

Restructuring. The engineering process of transforming the system from one representation
form to another at the same relative abstraction level, while preserving the subject system's
external functional behavior.

Retargeting. The engineering process of transforming and hosting or porting the existing
system in a new configuration.

Reverse Engineering. The engineering process of understanding, analyzing, and abstracting the
system to a new form at a higher abstraction level.

Source Code Translation. Transformation of source code from one language to another or
from one version of a language to another version of the same language (e.g., going from
COBOL-74 to COBOL-85).

32

Bibliography

Bergey, John, Dennis Smith, and Nelson Weiderman. DoD Legacy System Migration
Guidelines. Software Engineering Institute Technical Report CMU/SEI-99-TN-013.

Bergey, John, Dennis Smith, Nelson Weiderman, and Steven Woods. Options Analysis for
Reengineering (OAR): Issues and Conceptual Approach. Software Engineering Institute
Technical Report CMU/SEI-99-TN-014.

Barnes, J.G.P. Programming in Ada, Wokingham, England: Addison-Wesley, 1994.

Barry Boehm and Bradford Clark. Cost Models for Future Software Life Cycle Processes:
COCOMO II, USC Center for Software Engineering, Annals of Software Engineering, 1995

Booch, Grady. Object-Oriented Analysis and Design (2nd Edition). Redwood City, CA: The
Benjamin/Cummings Publishing Company, Inc., 1994.

Byrne, Eric J. A conceptual foundation for software reengineering. In Proceedings of the
International Conference on Software Maintenance. IEEE Computer Society Press. pp.
216-235, Nov 1992.

Chikofsky, Elliot and James Cross. Reverse Engineering and Design Recovery: A Taxonomy.
IEEE Software, 7(1):13-17 (Jan 1990).

Deitel & Deitel, How to Program Java, Prentice Hall, Upper Saddle River, NJ, 1998.

Dershem, Herbert L and Michael J. Jipping, Programming Languages: Structures and Models.
Boston, MA: PWS Publishing Co, 1993.

GAO AIMD-94-175. Attack Warning: Status of the Cheyenne Mountain Upgrade Program,
Letter Report, 09/01/94, US General Accounting Office

Jacobson, Ivar and Fredrik Lindstrom. Reengineering Old Systems to an Object-Oriented
Architecture. OOPSLA Proceedings. pp. 340-350. 1991.

Korson, Tim and John D. McGregor. Object-Oriented: A Unifying Paradigm. Communications
of the ACM. 33(9):40-60. Sep 1990.

33

Newcomb, Phillip. Reengineering Procedural into Object-Oriented Systems. In 2nd Working
Conference on Reverse Engineering, Los Alamitos, CA. IEEE Computer Society Press, Jul
1995, 237-251.

Olsem, Michael R. and Chris Sittenauer. Reengineering Technology Report. Technical Report
Vol 1, Hill AFB, UT: Software Technology Support Center, Aug 1993. 17 Jul 97.

OSD FY98 Annual Report. Annual Report for FY98. Office of the Secretary of Defense.

Quilici, Alex. Reverse Engineering of Legacy Systems: A Path Toward Success. In Proceedings
of the 17th Annual International Conference on Software Engineering. IEEE Press. Seattle,
WA, pp. 331-336, April 1995 (invited position paper).

Sneed, H. Migration of Procedurally Oriented COBOL Programs in an Object-Oriented
Architecture. Proceedings of the Conference on Software Maintenance. pp. 105-116. Nov
1992.

Sneed, Harry M. and Erika Nyary. Extracting Object-Oriented Specifications from Procedurally
Oriented Programs. In 2nd Working Conference on Reverse Engineering, Los Alamitos,
CA. IEEE Computer Society Press, Jul 1995, pp. 217-226.

Sneed, Harry M. and Agnes Kaposi. A Study on the Effect of Reengineering on Maintainability.
International Conference on Software Maintenance, 1990, IEEE Society, pp 91-99.

SRAH. The Software Reengineering Assessment Handbook. JLC-HDBK-SRAH. March 1997.
In conjunction with the Software Technology Support Center (STSC)

Stroustrup, Bjarne. The C++ Programming Language, ATT Bell Labs, New Jersey, Jul 1987.

Sward, Ricky E. Extracting Functionally Equivalent Object-Oriented Designs from Legacy
Imperative Code. PhD Dissertation. Air Force Institute of Technology. 1997.

Vienneau Robert, A Review of Non-Ada to Ada Conversions, Report to Rome Laboratory,
RL/C3C, Rome, NY, August 1993.

DISTRIBUTION A:

Approved for public release; distribution is unlimited.

Air Command and Staff College
Maxwell AFB, Al 36112

	THE SOFTWARE MAINTENANCE SPECTRUM:
	Disclaimer
	Contents
	List of Illustrations
	List of Tables
	Abstract
	Part 1. Introduction
	Background and significance of the problem
	Cheyenne Mountain Upgrade (CMU) Example

	Part 2. The Importance of Understandability
	Software Understanding
	Programmer Unfamiliarity
	The Importance of Understandability

	Part 3. Quantifying the Cost of Software Maintenance
	The COCOMO II Development Cost Model
	The SRAH Reengineering Decision Model
	The Cost of Software Maintenance

	Part 4. The Software Maintenance Spectrum
	Status Quo
	Redocument
	Reverse Engineer
	Translate Source Code
	Restructure within a Paradigm
	Restructure into a New Paradigm
	New Acquisition
	Challenges

	Part 5. Conclusions
	Glossary
	Bibliography

